- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Mason, John R (1)
-
Norden, Robert (1)
-
Parke, Tyler (1)
-
Silva-Quinones, Dhamelyz (1)
-
Silva‐Quinones, Dhamelyz (1)
-
Teplyakov, Andrew V (1)
-
Teplyakov, Andrew_V (1)
-
Wang, George_T (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
As the size of the components in electronic devices decreases, new approaches and chemical modification schemes are needed to produce nanometer-size features with bottom-up manufacturing. Organic monolayers can be used as effective resists to block the growth of materials on non-growth substrates in area-selective deposition methods. However, choosing the appropriate surface modification requires knowledge of the corresponding chemistry and also a detailed investigation of the behavior of the functionalized surface in realistic deposition schemes. This study aims to investigate the chemistry of boronic acids that can be used to prepare such non-growth areas on elemental semiconductors. 4-Fluorophenylboronic acid is used as a model to investigate the possibility to utilize the Si(100) surface functionalized with this compound as a non-growth substrate in a titanium dioxide (TiO2) deposition scheme based on sequential doses of tetrakis(dimethylamido)titanium and water. A combination of X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry allows for a better understanding of the process. The resulting surface is shown to be an effective non-growth area to TiO2 deposition when compared to currently used H-terminated silicon surfaces but to exhibit much higher stability in ambient conditions.more » « less
-
Parke, Tyler; Silva‐Quinones, Dhamelyz; Wang, George_T; Teplyakov, Andrew_V (, ChemPhysChem)Abstract As atomic layer deposition (ALD) emerges as a method to fabricate architectures with atomic precision, emphasis is placed on understanding surface reactions and nucleation mechanisms. ALD of titanium dioxide with TiCl4and water has been used to investigate deposition processes in general, but the effect of surface termination on the initial TiO2nucleation lacks needed mechanistic insights. This work examines the adsorption of TiCl4on Cl−, H−, and HO− terminated Si(100) and Si(111) surfaces to elucidate the general role of different surface structures and defect types in manipulating surface reactivity of growth and non‐growth substrates. The surface sites and their role in the initial stages of deposition are examined by X‐ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Density functional theory (DFT) computations of the local functionalized silicon surfaces suggest oxygen‐containing defects are primary drivers of selectivity loss on these surfaces.more » « less
An official website of the United States government
